Arc Length and Polar Coordinates

1. Draw the graph and setup the integral used to compute the arc length for the following equations
(a) $x=\frac{1}{2} t, y=2 t^{2}$, for $0<t<2$.
(b) $x=\pi t, y=\sin (t)$, for $-1<t<1$.
2. Compute the arc length for the following equations:
(a) $\left(t^{3}+1, t^{2}-3\right), 0 \leq t \leq 1$
(b) $(\sin 3 t, \cos 3 t), 0 \leq t \leq \pi / 2$
3. Graph and convert to an equation in rectangular coordinates
(a) $r=7$
(b) $r=\sin \theta$
4. Compute the arc length of 3(a) in three different ways:
(a) Using basic geometry knowledge
(b) Using the arc length formula in rectangular coordinates
(c) Using the arc length formula in polar coordinates
5. Do the following:
(a) Draw $r=1 / 2$ and $r=\cos (3 \theta)$
(b) Find the area of inside the "petals" and outside of circle.
(c) Find the area of inside the "petal" and inside the circle.
